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In paper [1] the problem of established flow of an incompressible viscous-
plastic medium in pipes with arbitrary cross section was examined; theorems
of existence and uniqueness of the solutlon were proven; & qualitative
investigation of the flow character was carried out. Necessary and suffici-
ent conditions of existence of motion with veloclty different from zero were
established. The existence of at least one rigid nucleus within the domaln
was proven. A sufficiently large class of cross sections was 1isolated for
which the nucleus is unique,

In this work two questione are examined which were not touched upon in[1]:
firstly, the existence of stagnant regions in flow through pipes;

secondly, the mathematical side of the problem connected with the non-
differentiability of the functional under examination.

The answer to the second question permits the conclusion that in the case
under consideration, the equation of Euler remains valid only in regions
where the solution has a velocity field gradilent different from zero. 1In
regions however where the solution has a constant value, Euler's equation is
replaced by some natural geometric conditions amenable to clear physical
interpretation. So, for example, such a condition for a rigid nucleus turns
out to be the dynamlc condition of its motlion as a solld body. It should be
noted that such conditions were earlier introduced into the problem as sup-
plementary assumptions.

An analogous situation exlists also for stagnant regions. In Section 1 of
thls paper necessary and sufficlient conditions are formulated which are
satisfied by the functlon which minimizes the initial functional. It is
shown that the boundarles of the stagnant regions are always curved towards
the stagnant zone and at each point have a curvature no less than To/b )
while the boundaries of nuclei at points of bulging have, conversely, a cur-
vature no greater than T,/c.

In Section 2 1t 1s shown that certain exact solutions for problems of
motion of a viscous-plastic medium in pipes actually minimize the correspond-
ing functionals. The possibillity of existence of stagnant zones is proven
depending on geometrical peculiarities of the boundary (corner points,
regions with reduced width)

Results from Section 3 of [1] are frequently used in this paper. PFor this
reason all notatlons adopted there are retained; Just as 1n the paper [1]
all cumbersome proofs are placed in an appendix at the end of the paper.
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842 P.P. Mosolov and V.P. Miasnikov

1. COriterion for selection of true motion. We shall examine the func-~
tional .
) u .

J(u) = S{Z (Vu)? - 170|Vu‘—(’u,} dw (1.1)
w

defined for functions ul(x, y) which are contlinuous together with the firct
partial derivatives within the confines of the bounded domain « and which

satisfy tie following boundary conditions on the boundary I of the Jdomain:

wlr - @(z,y) (1.2)
In [1] it was shown that the function which describes the real motlion of

the viscous-plastic medium in the pipe wlth an arbltrary cross section, minl-
mizes the functional (1.1).

The purpose of this sectlon is to find effective conditions which permit
a check that the specified sufficilently smooth function u,(x, y) subject to
condition (1.2) minimizes the functional (1.1).

Let us assume that the point set of the domain w , where |vuo| = O ,
represents the totallty of closed nonintersecting domains 4,,..., 4, and
Bys..., B, where all A; are located strictly within w , whille each P, has
at least one common point with T . The boundary of the domain A4, 1s deslg-
nated by «,, the boundary of the domain R, 1is designated by b, . With
respect to uo(x, y) it 1s also assumed that it achleves 1ts local maximum
in each 4, and that in the domain Q , which is the part of the domain w
where |vuo|> O , 1t 1s continuous together with 1its derivatives through,
inclusively, second order. In the following text we shall refer to domain
A, as nuclel of flow and to domains £, as stagnant zones.

Necessary and sufficient conditions which must be satisfled by the func-
tlon minimizing the functional (1.1) can be formulated in the form of the
following theorem.

Theorem® 1.1 (criterion) (*) . For the function wuo(x, y) to

minimize functional (1.1) it is necessary and sufficient that:

1. In the region 0 the function wue{x, y)

\ / satisfies Equation
\ / wAu, + 1o div [Vue / [Vug|} + ¢ =0

2. In each domain pB;, for any contour X which
is located in pB; and which is the boundary for sub-
domain k* of domain B,, the following inequality
holds (Fig.1l) (**)

TomesL > cmesK* 4 to,mesy (K=L-+7)

Fig. 1 where vy 1s the part of contour ¥ which colncides

*) Proofs of Theorems and Lemmas designated by an asterisk are given in the
appendix.

**) By mes L , mes y and mes #* the corresponding length of lines 1L
and vy and the area of domain Kk are designated.
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with p\I' (*).
3. In =ach domain 4, the following relationships hold:

a) t,mesa; = cmesd; (v) tymesK > cmesK*

where X 1s an arbitrary contour lying in the domain 4, and forming the
boundary for sub-domain K* of the domain 4,.

While conditions 2 and 3 of the criterion have a purely geometrical char-
acter they are difficult to verify by virtue of the arbitrariness of contour
X which enters In. Lemmas 1.1 and 1.2 make the practical utilizatlon of
the criterlon substantially easier. These Lemmas isolate a comparatively
narrow class of ccntours on which it is appropriate to check conditions 2
and 3 of criterion.

We shall examine domain 7 with boundary 4 . Let K be a contour loca-

ted within the confines of region J and forming the boundary of sub-domain

K* of domain D .

Lemma* 1.1 . Functional M (K)= 1, mes K — cmesK* achieves
its minimum on contour X‘ with the following propertles.

1. In internal points 7 the contour X’ coincides with another peri-
phery with radius T,/c .

2. ‘Contour X’ can approach boundary d at a nonzero angle only at
points where the boundary d 1is not smooth.

Let the boundary d be representable in the form d =y + L where vy
is the totality of a finite number of smooth curves. Then the contowr ¥
examined above permits the representation K =T + 7 where 7 18 part of y.

g

S

v i «
N Z,

Fig..2 Fig. 3 Fig. 4

Lemma 1.2 . Functional N (K)= 1,mesT — 1, mes t—c mes K*
attains its minimum on contour X' which has the properties 1 and 2 of Lem-
ma 1.1.

Proof of Lemma 1.2 1s a word for word repetition of proof of lLemma 1.1.

Conditions 2 and 3 of the criterion permit to draw certain conclusions
with regard to geometrical peculiarities of boundaries of stagnant zones and

*y b\ T designates the set of points of curve b, which do not lle on T,
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nuclel of flow. First of all, it is completely obvious the’. none of the
domains A, or B, can contain a circle with a radius gre.ter than 21,/c .
Secondly, it 1s easy to see that bD\I‘ is concave with respect to reglon 3B, .

In fact, let us assume the opposite. Let us examine the contour
K = "M,M*M, + [er M,] (see Pig.2). It is apparent that in this case
mes “M,M*M,> mes|M,,M,], contradicts condition 2 of criterion. Less
apparent 1s the following property of the curve b;\ T.

Theorem 1l.2. If b{\\I‘ 18 a curve with continuously varying
curvature »x , then |n|, < o/% .

Proof . Let us assume the opposite. Then & point ¥ exists on
B \T, where |x|>o/To . Let us examine the vicinity of point N and
introduce in this vicinity new coordinates orienting the axis 0, along the
tangent to the curve and the axis 0, along the normal. The origin of coor-
dinates 18 selected at the point ¥ . The curve bi\\r in the vicinity of
point N can be represented in the form y = gx* 4+ O (2%, a < ¢/ 21,
A periphery is drawn with a radius To/o as 1s shown in Fig.3. We note
that such construction is possible for sufficiently small x,, namely, because

of a < of21, .

As contour X we select a contour consisting of an arc of periphery L
and an arc of curve T . By X* we designate a domain bounded by contour
X . It is easy to find that

mes K* = —4Yax2—(ty/¢) 24+ cz®/ 2ty (v5/c)® st (cx,/ 1) +O (2,4
mes t = 2z, + zatz,® + O (z,%)
mesL = (2v,/¢) san (czy/ T,)
It follows from condition 2 of criterion that
Tomes L > 1, mes t + ¢ mes K* (1.3)
Substituting into this inequality values found for mes L , mes T and

mes X*, we obtain O > (2at, — €)%z, + O (z,%), which 1s impossible for
sufficiently small x, . Theorem 1.2 is proven.

The following Theorem is proven quite analogously.

Theorem 1.3 . If the boundary &, of the nucleus of flow 4, at
the point ¥ 18 convex and the curvature x of the boundary 1s continuous

in ¥ then in ¥
' %] >e¢/ 1
In the proof of Theorem 1.3 instead of condition (1.3) it 1is appropriate

to make use of the following inequalities which result from relatilonships
(a) and (b) of point 3 of the criterion

Tomes IV { 1,mes.’ + cmes K'*
Notations TI’, L’ and X‘% are indicated in Pig.4.

Conditions 2 and 3 of Theorem 1.1 have a clear physical significance. If
conditions for motion of the nucleus are set up as of a solld body without
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acceleration, they will have the form
Tomes a; = ¢ mes A;

It 1s clear that 1f conditions of equilibrium of all forces acting on the
nucleus are fulfilled for the whole nucleus in its entirety, then they must
be fulfilled a fortiori for any of its parts. An analogous situation exists
also for stagnant zones.

In this manner conditions 2 and 3 of Theorem 1.1 represent dynamic con-
ditions for motion of nuclei and equilibria of stagnant zones.

2. Verifiocation of known exaot solutions, The criterion formulated in
Section 1 for the selection of real motion of a viscous-plastic medium in
pipes from all kinematically possible motions permits verification of known
points of solution (2 to 4].

l. Motion in a circular pipe [2] . In this
case the exact solution has the following form (Fig.5):

T
= -Lln%—{— Tcp‘(m‘“"’) tor R, <r<R

R, ¢ <R1=2—:—°) (2.1)
uozﬁp—ln—ﬁ— +—4'—p—(R2—~R1’) tor 0Cr <R,

Condition 1 of Theorem 1.1 18 verified by direct substitution of wuo(r)
into the differential equation. Since stagnant zones are absent, condition
2 drops out. Consequently, it is necessary to check only condition 3 of
Theorem 1.1. In the case under examination the nucleus is unique and its
boundary I 18 a periphery of radius R, . Lemma 1.1 permits the assertion
that condition 3 of criterion 1.1 must be checked on two contours. One of
these 18 the periphery of radius 10/6 and the other is the periphery of
radius 21,/3 . In both cases condition 3 of Theorem 1.1 is satisfied. This
aleo proves that function uo(r) minimizes functional 1.1.

2. Longitudinal motilion in an annular
g a p-[3). The exact solution is given by the following equation (Fig.6)

. R CRy r o
uo=To(Rl-r)+[$ T;]lnH_I“FE(Rlﬂ—*) tor Ry <r <R,
T TR ¢Rg? r
w= = r+ [ =S G ln gt fwe— R <R
%o T TR cRy? R c
wo=y (i~ R+ S0+ gt b LR —RY) e Re<r <Ry
To ‘foRg CR22 Rg c To
= Ry & [ B SR | T+ g me— r = T (ry— Ry 4
_ Tofls cRy® R, C 27 (2.2
A G R L me—ry Re—m o O

Condition 1 is checked exactly the same way by direct substitution into
Euler's equation. Stagnant zones are absent and condition 2 of Theorem 1.1
18 eliminated. Condition 3 of criterion 1.1 must be verified again on two
contours. One contour is a periphery with & radius To/b which is inscribed
with tangency into the nucleus itself. The second contour consisting of two
parts is the boundary of the nucleus itself. In both cases condition 3 1is
fulfilled, this proves that function u, (2.2) minimizes (1.1)

3. Flow 1In noncircular pipes [4]. The solution
for a plpe with noncircular cross section obtained in [4] minimizes func-
tional (1.1). This fact i1s obtained fairly simply by utilizing Lemma 1.1,
but requires cumbersome computations which are omitted for the sake of
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brevity. Let us approach the examination of stagnant zones. in [4] the
exact solution wu, 1s constructed in an angular domain (o > 3n) . In this
case the function u, becomes zero
(FP1g.7) somewhere in the vicinity
of the tip of the angle bounded by
sides 04 , 0B and the curve vy
We draw a periphery with radius

OR , With the center at the point
0 . The function ug becomes zero
on lines OR, and OR, and takes
the value wtx, ¥) > O on the arc
of periphery R,\MR,

We shall demonstrate that among
all functions which become zeroc on
Pig. 5 Fig. 6 radii OR, and ORF, and are equal
to ox, y) on the arc B MR,, the
function uo, gives the smallest value to the functional (1.1). To convince
oneself of this it is sufficient to verify conditions 1 and 2 of the crite-
rion. Ahere are no nuclei of flow here, therefore condition 3 drops out.
Condition 1 of criterion 1s easily verified by direct substitution of wue
into the corresponding differential equation. We shall check condition 2 of
eriterion. Since the radius of curvature £ of curve y 1is equal to {7,/c)
{1 4 [4a (B + cos?q)]"t} (for notations see [4]), in the domain of the stag-
nant zone it 1s impossible to draw a periphery tangent to the boundaries of
the stagnant zone.

Utilizing the statement of Lemma 1.2 it is found that condition 2 of cri-~
terion must be checked only on two contours. The first contour K, repre-
sents the boundary of the stagnant zone, the second contour X, 1s degcnerate
and represents the arc y which 1s passed twice. We note that the first
contour is not external for functional ¥N(X) (see Lemma 1.2) since for con-
tour Ky= y + APGR (Fig.7)

2t (1 —sina 1 —si
N(Kl)-—N(Ks)mp(‘Eg(—c“aga“—))wcpoota), pgﬂ)-—(-c-s—i—n—-—ima) (2.3)

and N{k,) = ¥(X,) . Prom this it follows that inf ¥(X) 1s achieved on a
degenerate contour X, and inf ¥(X¥) = 0 . Condition 2 of criterion has
been verified. We note that solution y, in this case minimizes functional
(1.1) not only in the sector under examination, but also in the domzin repre~
sented in Fig.Ba) if only the curve L does not touch the boundary vy

B A 8
N z,7
g
a) b)

Fig. 7 Fig. 8

In this manner the outer boundary of the stagnant zone can be deformed in
an arbitrary manner within the sector wilthout touching the boundary vy ,
while the solution uo, in the flow domain will remain unchanging. We can also
examine the growth of stagnant zone (Fig.8, b) which preserves solution ug
unchanged in the domain of the flow. The boundary L 4in this case is not
arbitrarﬁ, but for example such that in the domain bounded by curves vy and
L (Fig.8, b) it is not possible to draw a periphery with a radius To/&
which touchea the boundaries. For such choice of I condition 2 of crite-
rion is verified in an obvious manner with utilization of Lemma 1.2. This
1nd1§ates that the region between y and L {Figz.8, b) is a stagnant zone
of flow,

The solution found in the angular domain permits to find the exact
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solution u, in the domain represented in Pig.9. Solution y, becomes zero
on segment B, T , R,'T , F,S and R,’S and it becomes o{x, y) on arcs of
peripheries R,R, and AR, 'R,’. The domain represented 1b Fig.9 1s obtalned
by superpocltion of sectors (Fig.7) on one another. It in approprilate to
note that superposition of sectors must not be very large if 1t 1s required
to keep the flow domain unchanged. For example, if the sectors are superim-
posed such that the curves vy in the upper and lower sector touch (Fig.10),
then in this case the distribution changes in the flow dimain because domain
¥ Dbounded by the broken line AT4’ and two segments (4C, 4C’) of curve vy
does not satisfy condition 2 of the criterlon

Tomes (ATA’) — T, mes (ACA’') — cmes K <0

Ay

Fig. 11

Fig. 12 Fig. 13 Fig. 14

We denote the quantity 0T in Fig.10 by X . Then it follows from Lem-
ma 1.2 and relationship (2.3) that the region of flow will remain invariant
if
1 —sina
m——cp”una——%ro—{-k?csina)O, 0l

In the following only such superpositions of sectors are examined for
which the stagnant .one takes up the domain between curves vy 1n the upper
and lower sectors (Fig.10). We shall demonstrate now that for steady flow
of a viscous-plastic medium in cylindrical tubes with arbltrary cross section,
stationary  zonec can exist, 1.e. zones adjacent to tube walls where the velo-
c¢ity 1s equal to zero. Thils fact will follow from the majorizing principle
presented in [1]. Let w, and w, be two plane domains and domain w, be
part of w,. Let wu, and u, be functions minimizing functional (1.1) in
the domains w, and w,, respectively. Then O s u;< u, in w,. We shall
assume that the bounded domain w 1s located within the obtuse angle. We
shall examine a sector OR,R, of sufficiently large radius so that w 1s
located within the sector (Fig.11).

Let us examine function u, constructed in [4] for the angle. From the
majorization principle it follows that u < up, where u 18 a function
minimizing functional (1.1) in w and becoming zero at the boundary T of
the domain w . However, since up 1s equal to zero below the curve vy
(Fig.11), u also becomes zero in w everywhere below the curve y 1if
curve vy crosses the domain « . Thus, in this case in the domaln w there
exists a stagnant zone taking up at least the domain hatched in Fig.1ll.

2p7o
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It follows from presented arguments that if w has a corner polnt and can
be located in the obtuse angle with apex in the corner point of w {for ex-
ample w 4is convex), then a stagnant zone exists in the domain w (Fig.12).
After the exlstence of the stagnant zone has been established in the domain
w , it 1s natural to attempt to find the greatest possible subdomain of
domain w which will fit into the stagnant zone. In a number of cases this
can be achleved by transposing the sector so that its apex moves in the stag-
nant zone of domain w . This motion of the sector over the stagnant zone

is represented in Fig.l1l3.

We shall examine another interesting case of stagnant zones having the
character of cross members separating two or several regions of flow {Fig.
14). The existence of such stagnant zones follows from the exact solution
constructed in the domain R,7TR, 'Ry ’SR, presented in Fig.9 and the majorizing
principle, Additional examination of dimensions of the stagnant zone can be
carried out by the methed presented above. In conclusion we note a simple
sufficlent condition for the absence of a stagnant zone in the vicinity of a
boundary point. If the boundary point can be touched by a circle of radius
evo/b which 1is located completely in the domain w , then in the vicinlty
of this point a stagnant zone is not present. This sufficient condition is
a trivial consequence of the majorizing principle and the exact solution
examined in Section 2, point 1.

Appendix, At first we shall establish some auxiliary statements.

Definition ., A function v, which satisfies (1.2) gilves weak
minimum of functional {(1.1) if for any smooth function 7, hlr = O there is
a value ), such that all X, {x] <)o

J (90 + M) > J (%) A1)

Lemma A.1 . If v, gives a weak minimum to functional (1.1), then
?o- 36 , where u, is a function giving an absolute minimum to functional
1.1).

Proof ., By virtue of convexity of functional (1.1) we have the

inequality
T (v + M (v — ) <J () + A U (ug) — T ()], O0<AKH A.2)
Let us select a smooth function h, h]r = 0 and such that
S{IV(h—(vo—“o))I’“i"lh-("o—-uo)l*du)<6 (A.3)
Then

IJ(”Q)_J(30+ Zp{h—(?)owuo)))l_—:\ S {Ap</ (h"‘(ﬂ’o—uo)) \v s
~Jr7“2_“z_|\7(h”‘("0‘uo))|2+ Yol V20 | —To| V (%o + A (h— (2o~ up))) | —
Since — e (h— (20 — up))} doo |

| § 9001 — 17 @0+ 2 (h— o — w10 | <121 § 17 (= (0 — ol do0
it therefore follows from (A.3) that ©
1T () — J (0p + M (B — (v — ug)) | SIA|OK (A.4)
where K 1s independent of A and & . We have further from (A.2) that
J (vo) 2 A [J (zg) — J (“n)l + J (v, -+ A (ve — ug)) > AT (zg) — J (uv)} +
4 2J (vy + Yahh) — J (vg + A (B — (vo — ug))) > A T (vg) — J )] +

e 2T {2y F Yphh) — T () — 1 (vg) — T {wg + A (b — (vp — ug | >
> A () + T (ug)) + 27 (v + Yyhh) — J (vg) — AKS

Consequently
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T (z0) > (1yA) 1 (00) — T (ug)] + T (00 + Yghh) — Y5hKS

If J{vy) > J{uo) then & can be selected so small that we will have
J{ve) — Jlus) > 2k then for all A(0 < x =< 1)

J(vy) = J (vg -+ Y;Ah) (A.5)

Inequality (A.5) contradicts (A.1); consequently J(vg) = J(uo) From
the theorem of uniqueness [1] 1t follows that Ug= %o . The Lemma has been
proven,

Lemma A2 ., If functional {1.1) has a critical point v,, then
To= Uo Where U, 1is a function which minimizes functional {1.1).

Proof . Let v, be a critical point, then
J (90 4 A (vo — uo)) — J (o)

lim =0 (A.6)
A0 A
However, J (v, -+ A (rg — ) = J (hitg + (1 — A) 2) AT (ug) + (1 — W) J (o),
i.e. J(%“’l‘x(l’o—”o))“‘*’(l’o) ?v[J(uo)—‘J(?Ju)}<0

Consequently
lim J (90 + A (up —v0)) — J (v0)

Aot A

T (up) — I (20) O

The last inequality contradicts (1.6), if wuy, #0e . Lemma A2 is proven.
Lemma A3 (*) . For the inequality

roS'|vh1dm+r.,Shds>cShdm (A7)
w r w

to be applicable for any smooth h{x, y¥) , it is necessary and sufficlent
1°t,mesT = ¢ mesw, 2°1ymesI’ > cmesw’

where’ w’ is an arbitrary sub-domain of domein w and T’ 1is the boundary
of w’.

Proof . Necessilty . Condition 1 follows from (A.7) 1f we
write n(x, y) = # 1is a constant. Let us examine an arbitrary sub-domain
w’ of domain w with the boundary I'’. Let I'’ have a finite curvature in
all points. Then in some nelghborhood of this boundary 0, {(T’) we can intro-
duce a curvilinear system of coordinates using as one variable 8 the length
of the arc along I’ and as the other variable n»n the length of segment
normal to I’. The boundary of 0,{(I'’) 1s made up of lines n,(8) = & q,.
Let us assume that g, -0 for J == and that I’ is s SO
together with @,(I'’), starting with some j . Let us examine in w the
sequence of, functions v, equal to unity in ©'\0; () and to zerc in
o \(e’'J0; (I‘ ). In 0,(r*) function v, is a monotonous function of variable
n . Then
lim S [ Voj|do=mesI", lim S v; do = mes &’ (A.8)
w

j~»00 §—00

L]
Condition 2 of Lemma follows from (A.7) and (A.8). It is easy to see
that the conditioun of finite curvature and imbedding are unessential. Neces-
sity of conditions 1 and 2 1s proven.

Sufficiency . It is sufficient to establish inequality (A.7)
for arbitrary polynomials. Let @(x, y) be a polynomial; then it has only
a finite number of level lines passing through singular points where
J{v@}] = 0O . Level lines ¢ passing through singular points will be called
singular, other level lines will be called nonsingular.

*) Lemmas used in the proof and notations 4 B, 4 |JBand Up p used in
examinatlions below [7] as usual denote the difference in sets A and p,
the sum of sets 4 and 7 and the sum of the family of sets 4,, respectively.
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Let us examine a nonsingular line of level L, the value on which 1s
equal to p (Q(l.)'— p). In some vicinity of Lp we can introduce a curvi-
linear system of coordinates g and .n in the manner indicated above. 1In
this viclnity we take the level line LpTApv the equation for which 1is
n =n(s) >0 . It wlll be assumed here that for fixed s the quantity
0(n, 8) 1s nondecreasing function of n for ¢ sn < (8) .

The set of points in the neighborhood under examination which belong to
w and are such that for them O < n s n(s) , will be denoted by @ piap
It 1s easy to see that the domain w can be strétified into sub-domains of
the type Dp oA with accuracy to a polynomial of a degree as small as

desired, 1i.e.
m!=%jcop,p+m) mes [0\ o] <&

where ¢ - O for n(e) -~ 0 . Through X, we designate a closed contour
colnciding with L, 1if L is an oval lying in w and If » and
it L with 1ts ends comes out on the boundary I of domain w ﬁer

1s the part of boundary I which connects the ends of L, where Q (y,) > p.
By @ we shall designate a sub-domain of ®w which is bounded by co tour
K, . Since
e To Ines K > cmes o,
then
To [mes L, + mes 1, [Q (Ly pp) — Q (L,)] > c mes 0, [Q (Lypr) — Q (L] (A9)
We note that

‘ 9
vomes Ly [Q (L, , ) — Q (L) =7, S 63 dnds -+ 0 (n (s)) n (s)

Do, p+Ap
Summing (A.9) with respect to p we obtailn

S mes 0, (Q (Lyy pp) — @ (L)) = 1Q (2, v) —Inf Q (=, y)} do + O(n ()
I3

w

D mes 1, 1Q (L, 50) — Q (L)l = | {Q (= 9) — inf Q (2, y)}ds + O (n (s)
P

T

Shmes L, [Q (L, ) — Q (L < { 1 VQ 140+ 0 (2 (5)
2]

w
Consequently,
-roS|VQ|dw+1:oSst>cSQdm—i—tMngmesF—cianmesm
© T [ ©

From condition 1 of Lemma
Toinf Qmes T — cinf Q mes ® > inf Q [ty mes ' — c mes w] =0
r 3 [

In this fashion Lemma A.3 has been proven.

Let the domain w be bounded by contour # and R =T + y where
are some smooth curves consisting, generally speaking, of a finite number
of connected components.

Lemma A.4 . Por the inequality

oS|vh|dm—toShds>cShdm (A.10)
] Y w
to be satisfied for all smooth » , which become zero on T , the fulfillment

of the following condition is necessary and sufficlent: for any closed con-
tour R’=T’+y’ lying in w where v’ 1s part of y the inequality

Tomes I’ — 1ymesy > c¢ mes o’ (A.11)
applies, where w’ 1s a sub-domain of w bounded by the contour R°.
Proof . Necessilty . In analogy to Lemma A.3 we construct
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a step-wise functlon which 1is the 1imit of v,,equal to 1 in the domain w’
and equal to zero outside the contour R’., Substituting this function into
(A.10) we obtain condition (A.11). We shall demonstrate this. Let T’ be
a smooth curve; 1n 1its viclnity 04 (r’) we shall introduce curvilinear coor-
dinates (8, n) . Boundary of 0,(I'’) are the lines » = % q, and q,; ~ O for
-~ o , Let us examine a sequence of functions vj(x, v) which are equal to
unity in 0"\ Q;(I") and to zero in o\[0'UO0; ("))  In 0,(I'’) functions v,
are monotone functlons of variable n . Then

limS | Vv;ldo=mesI", lim S v;ds—mesy, lim S v;do=mesw (A.12)
j-»c0 j—>00 j—o0

w Y i

Comparing (A.12) with (A.10) we obtain (A.11). The necessary condition
has been proven.

Sufficiency . Wenote[5] that it 1s sufficient to establish
the inequality (A.10) on functions (*) from W,'(w) (p > 2) positive in w
and becoming zero on I' . Let us approximate such a function by a polynomial
0.'(x, y) in the metric W¥,'(w) . From theorems of imbedding [5] it follows
that ¢,' converges to » uniformly, i.e.

1
1Q2—hi<qs  \IV@i-miw<d (A1)

Let us examine the polynomlal @Q,= @¢,'— 1/n . It is clear that n_,< O
on I .,

From the polynomial ¢, we make the transition to function @.*
Q"*=0 for Q”<O’ Qn.=‘ Qn for Qn>0

We shall demonstrate that for 0,* evaluations analogous to (A.13) are
applicable. The set where @,*= O 1s denoted by S, . Then [Q.*— n|< 2/n
in ®\\$,. Since |n|<2/n 1in the domain 5,, then 1¢.*— »[< 2/ 1n S, .
We shall demonstrate (**) that mes{S, () supp B0 for n ~o . Let us exam-
ine the set A, ={(z.y)[h|<2/n}(}supphb. Then 1lim p,= & , where & 1s an
empty set and a2 . Consequently mes p,~ O for n ~ o . But
A, DS, Nsupph. "In tds manner mes {§, N supph}—+0 for n -« . Thus it
follows from (A.13) directly that

[h—Qu*1 =0, SIV(h—Qn‘*)Idm—»O for n— 00 (A.14)

Utilizing relationship (A.11) we establish the inequality {(A.10) for @, .
Let us examine a nonsingular line of polynomial ¢, in the domailn w/S, .

As usual, we introduce curvilinear coordinates in the vicinity of this
level 1line. In analogy to Lemma A.3 we stratify the domain ©\§, with
accuracy to a set of degree ¢ on the sub-domain of the form @y p+ap We
shall examine the contour Kp, which surrounds the domain 05, located in
o\ §,. Then

Ty mes L, — 7, mes Yp = ¢ mes @,

where Yp 1s the part of contour Kp, which coincides with part y . Then
repeating the steps carried out in Lemma A.3 and noting that inf ¢Q,=0 on
o\ 8, and inf Q,= 0 on vy, we arrive at the inequality

To S 1VQ,, [do — 1o S Quds>c S Q,do (A.15)
o\8, Tn ©\8y,
where vy, 1s part of y which is a plece of the boundary @ N\ 8. Since Q.*

colncides with . In @\ S, and 1s equal to zero on Sus 1t follows from
inequality (A.15) that

*) The symbol W,!(w) denotes a set of functions in the domain « which
have first derivatives integrable with the degree p .

*#) The notation supp h as usual applies to the carrier of the function
h , 1.e. the set of points of the plane where h # O .
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T S }VQ,*jdo— 1o S Q*ds>c S Q. do (A.16)
o h 4 @

( R%ationship (4£.10) follows from inequaiity (A.16) and relationships
A.l

Proof of Theorem 1.1 . Let us examine an increment of
functional (1.1). Then

AT =T (ug -+ Ah)— J (1) =
“S{""‘V‘W" + %W"l’ﬂotV<%+M)f—roquo-cm}dm

Let ®; denote a domain where [V up) > A%, a <y, The increment OHJ  is
written in the form

s ={{mvuvs + §omtdo+{wiriivnidor
[ Q

+ {1Vt — 1 Vupdo + w0l Vi + M) =1V w ) do — § chrdo
Wy w ()
=0\ (0, U Q)
Noting that mes {o\(o, JR)} -0 for A -~ O and that
|09+ an1—1Vwido|<iai {1vr1da
we obtain ° ©

AT = S{Lquovh—-cM}dm—l-S %l || Vh|do +

@ ¢}
+ Sto{lV(ue+?~h)!-—iVuol}dm+o(A) (A1)
o)
Transforming the last integral in (A.17)
h
V09 ot =1 Tumpao = § TG do +
@) wy)
+S A2l VAR do + VugVh{— 22| Vh |2 — 2V usVh} d
3 Ve F TVl © T ) [Vuo (1Y (o F AR+ [VHelF °°

We apparently obtain

A2 (AR _
SIV(un+xh);+;§7m do = o (A)
wy
FueVh {(— A2 | VA [P — 2AV uV A} B
S ‘vu‘)lﬂV(uo-}—hhHJr]vuol} dw =0 ()
Then A
VU2 i (Yo y 7 g
S [Vl 07 S[dw{!vuof )] kdm+s§ b () e
Wi @3

where &, 1s a contour surrounding A, (Vue/ ] Vugllln is the projection
of the vector on the direction of the external normal to §;. In this manner
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A = — x {HA“O—*-T() div rv‘vv—::—l“f“'}' khdm—-g cAh do +
—{—StolV}\.hldw+ &T%uz—l Lds+o (1)
Q S

We note that if point S, for X - O approaches a point on the boundary
a, of the nucleus of flow 4, , then (Vu,/|WVuygl)ln — 1; if however the point §,
for A - O approaches a point on the boundary b, of the stagnant zone B,
then (Vu,/| Vup )in — — 1. Consequently,

g hVuo
[ Vi |

ds—-[ S hds — S hds]—»O for A —0

n

A
b,

a. i

1

o
[ty

Thus,

ZJ = — S {p,&uo-}—div l_g%+ c}lhdm-—gchhdm—-gckhdm
@i

i i
We shall prove the necessity of conditions 1, 2 and 3 of criterion. Let
us take h , conzentrated in ,; then

\ .V
VI =— X {uAuo_+ div IV::] +c} Mdo 4 0(h) >0 (A.19)
w)
From (A.19) it follows that
BVup + div [Vue / | Vugll +¢=0 B 0, (A.20)

Since A in (A.20) is arbitrary, the necessity of 1 is proven. Conse-
quently,

@ i

vJ:é‘,[ro §i |vxh|dm+rog A,hds—c§lhdm]+

D
—{—Z‘[ro S | VAR do — 7o Mzds—cg A,hdm]—}—o(k) (A.21)
1 Bi bi Bi
From (A.21) we have
r.,S|vxh|dw+rogxhds_cSAhdm>o (i=1,...,9)
ii a, Ai
nS\Axhwm—ronhds—cS M do > 0 G=1,..., p) (A.22)
Bi bi Bi

Lemmas A.3 and A.4% confirm that conditions 2 and 3 of criterion result
from inequality (A.22). The necessity of conditions is proven.

Sufficiency . Let conditions 1, 2 and 3 of criterion be ful-
filled. Then we have from Lemmas A.3 and A.4 and the representation of the
reansformation of functional (A.18)

T (uy+ M) — J () + 0 (A) >0

From this it follows that u, 18 either a critical point of functional
(1.1) or it produces a weak minimum. From Lemmas A.l and A.2 it follows
that ue in these cases gives an absolute minimum of functional (1.1). The
criterion has been proven.

Proof of Lemma 1.1 . Functional #(Xx) is bounded from
below because inf M(¥) = — mes D . By virtue of compactness of a set of
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curves with limited length there exists a contour X’ for which inf N(X) =

= M{¥')., Evidently contour X’ is convex at inter-
nal points 2 . Let us examine three sufficiently
closely situated internsl points N,;, &,’ and ¥,” of region
D . These points lie on contour X’ (F1§.15). It
is further assumed that the arc N,’' N,” N;' of

m contour K’ consists of internal points 0 , In this

o —— manner the segment [¥,‘, M,‘] is contained in the
domain K’'#*, bounded by contour X’. Let X' desig-
nate a domain enclosed between segment [N, ¥, ']
and the arc N, 'M,'N;’ ., We shall also examine an
arbitrary convex arc N, M,"N,’ located in 7 . Let
K,” designate a sub-domain D , enclosed between the
arc N,'N,”N;’' and the segment [¥,’, ¥,’] . Then it
1s easy to see that

Fig. 15

7o mes (My' My” My') — ¢ mes Ky” > vo mes (My My’ My') — c mes Ky’

Thus, 1f a new system of coordinates is 1introduced orienting the axis 0,
along the segment [N,’, #,’], the axis ¢, perpendicular and locating the
origin in point ¥,’ then the arc WN,', N,', N3’ minimizes the integral

X
S(To VITy —cy)dz  (y==mes [M/My1])

0

for conditions ¥ (0) = 0; y (mes [M,", My']) = 0. It is easy to verify that
extremals of functional (A.23) are peripneries with a radius 7,/6 . Con-
firmation of contact between X’ and d can be obtained directly utilizing
the well-known theorem on one-sided variations [6]. Lemma 1.1 is proven.
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